Open Source Encrypted
Filesystems for Free Unix

Systems

George Kargiotakis

mailto:kargig@noc.uoi.gr

Introduction

Users seek ways to secure their data with maximum
comfort and minimum requirements.

No application specific encryption 1s wanted.
Performance considerations.

Encryption can be more secure than physical security.
Protection of stolen equipment.

Lifetime of protected data could be years (backups).

Presentation Topics

* Threat Models

* Linux Solutions: CryptoAPI, StegFS, CFS, PPDD,
CryptFS, TCFS

* BSD Solutions: TCFS, OpenBSD Encrypted Virtual
Filesystem

Threat Models

*The theft of the computer while it 1s powered off or if the thief has
to power 1t off to remove 1it.

*The theft or copying of the discs from the computer.
*The theft or copying of backups.
*Copying of discs after booting the computer from a boot floppy.

Not all presented solutions cover ALL these threat models.

[Linux Solutions

CryptoAPI — Loop-AES

StegES

PPDD (Practical Privacy Disk Driver)
CFS

CryptFS

TCFS

CryptoAPI -- Loop-AES

(Loopback Encrypted Filesystems)
* Usable Ciphers:

- loop-AES: AES

— CryptoAPI: XOR, DES, twofish, blowfish, cast128,
serpent, MARS, RC6, DFC, and IDEA.

* Procedure of Installation:

— Kernel Patching

make patchkernel KDIR=<kernel source dir> LOOP=iv (or LOOP=jari
provided with loop-AES)

make modules, make modules install

- Loading of Cl'yptOIOOp device: modprobe cryptoloop

— Creation of 100Mb file: dd if=/dev/urandom of=/home/kargig/cryptfile
bs=IM count=100

Loading of desired cipher: modprobe twofish

Loading and encrypting the file: losetup -e twofish /dev/ioop0
/home/kargig/cryptfile

Formating and mounting the new device: nke2fs -j /dev/ioop0 ;
mount -t ext3 /dev/loop(/mnt

Unmounting and securing the device: umount /dev/ioop0; losetup -d /
dev/loop0

Positive:

> Very easy to install and use.
~ Relatively fast based on the selected algorithm.

> Can encrypt whole filesystems like /home (but not the booting device!!!
* Negative:

> Once mounted anyone with access on the dir can read the files.
> Encryption on whole devices is trivial.

Stegk'S

* Usable Ciphers: AES/Rijndael (default), Serpent,
Twofish and MARS

* Procedure of Installation and Usage:

— Patching the kernel creating new modules

make patch ; make patch LINUX=/path/to/kernel-source ; patch -pl <
/path/to/patch ; make modules, make modules install

— Create a filesystem and turn it to a StegFS partition.
mkeZ2fs /dev/device ; mkstegfs /dev/device /path/to/btab

— Mount the partition:
mount /dev/device /mnt/mntpoint -t stegfs -o btab=/path/to/btab

— Open N security levels: stegfsopen /mnt/mntpoint N

— Close N Security levels: stegfsciose /mnt/mntpoint N

StegE'S
*Positive:

> Various levels of security.

> An attacker cannot even see the existence of more levels than he has already
acquired.

*Negative:
> Speed.
> Waste of Space.

CEFS

* Usable Ciphers: Older versions DES running in CBC mode.
Newer versions use Blowfish.

* Procedure of Installation:

— Compiling sources and copying files to /usr/iocal/shin With
ownership root-wheel and accessmode 55/

— Creation of /cfsfs dir with ownership roor:root and
accessmode 000

— Creation of /securefs dir.

— Starting the daemon and mounting the filesystem:

/usr/local/sbin/cfsd > /dev/nulll
/bin/mount -o port=3049,intr localhost./.cfsfs /securefs

CEFS

Creation of CFS protected dir:

cmkdir secret

To make it readable we have to attach it:

cattach secret MYSecret

/securefs/MYSecret Will appear.

To secure the dir:
cdetach MYSecret

Positive:

> No need for system modifications.
Negative:
> Lack of speed

PPDD

* Usable Ciphers: Blowfish

* Procedure of Installation and Usage:

— Patching the kernel and rebooting from the new one

— Compiling the sources and making the necessary devices.
Make,; make devices, make install

— Create a filesystem.

ppddinit /dev/ppdd0 /dev/XXXX (where XXXX is a partition eg. hdcl)
— Setup the device:

ppddsetup -s /dev/ppdd0
— Create a new filesystem.: mke2fs /dev/ppdd0

— Mount it where we want: mount /dev/ppdd0 /home/kargig/crypto

PPDD

*To unmount and secure the filesystem:
mount /dev/ppdd(; ppddsetup -d /dev/ppdd0

*Positive:

> Ease of use.

> Possibility to use without kernel modifications.

> Secure backups

> Support for read-only media

~ PGP support

> Support for data integrity using MDS35 hashes

> Possibility for encryption of the root partition

*Negative:
> Not so strong algorithm

> Block size of the filesystem is locked to 1024

CryptEFS

*CryptES operates by “encapsulating” a client file
system with a layer of encryption transparent to the
user.

*Cipher: Blowfish

*2 working modes (UID — UID+PID checking)
*Performance

*Longer Passphrases

*Encrypted filenames

*Secured even from root user.

TCES

* Usable Ciphers: 3DES,RC5, Blowfish.

* Procedure of Installation:

— Kernel and sources recompilation

option TCFS
— Directory Creation

mkdir /crypto; mkdir /mnt/tcfs ; mkdir /crypto/kargig
chown kargig:wheel /crypto/kargig ; chmod 700 /crypto/kargig

— /etc/fstab modification

/crypto /mnt/tcfs tcfs rw,label=crypto, cipher=2
0=3DES [I=RC5 2=Blowfish

— Mount the device

mount /crypto

TCES

*Creation of user and keys:

tcfsmgr adduser

tcfsuse genkey
*Using the Filesystem:

tcfsuse putkey -f crypto
*Setting the X flag to a dir and testing the filesystem:
tcfsuse flags +x /mnt/tcfs/kargig
cp ./foo.txt /mnt/tcfs/kargig
cat /mnt/tcfs/kargig/foo.txt (we see clear output)
umount /crypto

cat /crypto/kargig/foo.txt (we se garbage)

OpenBSD Encrypted Virtual

Filesystem
* Usable Ciphers: Blowfish.

* Procedure of Installation:

— Creation of a file

dd if=/dev/urandom of=/home/kargig/cryptfile bs=1024 count=100000
— Association of cryptfile with a svnd device

vnconfig -ck -v /dev/svndOc /home/kargig/cryptfile
— Creation of new filesystem

newfs /dev/svndQOc
— Mount the new filesystem

mount /dev/svadOc /home/kargig/secrets

OpenBSD Encrypted Virtual
Filesystem

*Unmounting and securing the filesystem:

umount /dev/svndQc

/usr/sbin/vnconfig -u -v /dev/svndQOc

*Positive:
>Ease of use.

~Performance.
*Negative:

>Size Limit.

Conclusion

In most encrypted filesystems a major problem appears
with multi-user environments.

Security of a system 1s as strong as it's weekest link.

Choose an encryption scheme according to the current
needs.

Other Problems incude:

— Filesystem damage
— Data integrity checking

— Low Performance

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

