
Open Source Encrypted
Filesystems for Free Unix

Systems

George Kargiotakis

kargig@noc.uoi.gr

mailto:kargig@noc.uoi.gr

Introduction
● Users seek ways to secure their data with maximum

comfort and minimum requirements.
● No application specific encryption is wanted.
● Performance considerations.
● Encryption can be more secure than physical security.
● Protection of stolen equipment.
● Lifetime of protected data could be years (backups).

Presentation Topics

● Threat Models

● Linux Solutions: CryptoAPI, StegFS, CFS, PPDD,
CryptFS, TCFS

● BSD Solutions: TCFS, OpenBSD Encrypted Virtual
Filesystem

3

Threat Models
●The theft of the computer while it is powered off or if the thief has
to power it off to remove it.

●The theft or copying of the discs from the computer.

●The theft or copying of backups.

●Copying of discs after booting the computer from a boot floppy.

Not all presented solutions cover ALL these threat models.

Linux Solutions
● CryptoAPI – Loop-AES
● StegFS
● PPDD (Practical Privacy Disk Driver)
● CFS
● CryptFS
● TCFS

CryptoAPI -- Loop-AES
(Loopback Encrypted Filesystems)

● Usable Ciphers:
– loop-AES: AES

– CryptoAPI: XOR, DES, twofish, blowfish, cast128,
serpent, MARS, RC6, DFC, and IDEA.

● Procedure of Installation:
– Kernel Patching

make patchkernel KDIR=<kernel source dir> LOOP=iv (or LOOP=jari
provided with loop-AES)

make modules; make modules_install
– Loading of cryptoloop device: modprobe cryptoloop

– Creation of 100Mb file: dd if=/dev/urandom of=/home/kargig/cryptfile
bs=1M count=100

● Loading of desired cipher: modprobe twofish

● Loading and encrypting the file: losetup -e twofish /dev/loop0
/home/kargig/cryptfile

● Formating and mounting the new device: mke2fs -j /dev/loop0 ;
mount -t ext3 /dev/loop0 /mnt

● Unmounting and securing the device: umount /dev/loop0; losetup -d /
dev/loop0

● Positive:
➢ Very easy to install and use.

➢ Relatively fast based on the selected algorithm.

➢ Can encrypt whole filesystems like /home (but not the booting device!!!

● Negative:
➢ Once mounted anyone with access on the dir can read the files.
➢ Encryption on whole devices is trivial.

StegFS
● Usable Ciphers: AES/Rijndael (default), Serpent,

Twofish and MARS
● Procedure of Installation and Usage:

– Patching the kernel creating new modules
make patch ; make patch LINUX=/path/to/kernel-source ; patch -p1 <

/path/to/patch ; make modules; make modules_install

– Create a filesystem and turn it to a StegFS partition.
mke2fs /dev/device ; mkstegfs /dev/device /path/to/btab

– Mount the partition:
mount /dev/device /mnt/mntpoint -t stegfs -o btab=/path/to/btab

– Open N security levels: stegfsopen /mnt/mntpoint N

– Close N security levels: stegfsclose /mnt/mntpoint N

StegFS
●Positive:

➢ Various levels of security.

➢ An attacker cannot even see the existence of more levels than he has already
acquired.

●Negative:
➢ Speed.

➢ Waste of Space.

CFS
● Usable Ciphers: Older versions DES running in CBC mode.

Newer versions use Blowfish.

● Procedure of Installation:
– Compiling sources and copying files to /usr/local/sbin with

ownership root:wheel and accessmode 551

– Creation of /.cfsfs dir with ownership root:root and
accessmode 000

– Creation of /securefs dir.
– Starting the daemon and mounting the filesystem:

/usr/local/sbin/cfsd > /dev/nulll
/bin/mount -o port=3049,intr localhost:/.cfsfs /securefs

CFS
● Creation of CFS protected dir:

cmkdir secret

● To make it readable we have to attach it:

cattach secret MYSecret

/securefs/MYSecret Will appear.
● To secure the dir:

cdetach MYSecret

● Positive:
➢ No need for system modifications.

● Negative:
➢ Lack of speed

PPDD
● Usable Ciphers: Blowfish
● Procedure of Installation and Usage:

– Patching the kernel and rebooting from the new one

– Compiling the sources and making the necessary devices.
Make; make devices; make install

– Create a filesystem.
ppddinit /dev/ppdd0 /dev/XXXX (where XXXX is a partition eg. hdc1)

– Setup the device:
ppddsetup -s /dev/ppdd0

– Create a new filesystem: mke2fs /dev/ppdd0

– Mount it where we want: mount /dev/ppdd0 /home/kargig/crypto

PPDD
●To unmount and secure the filesystem:

mount /dev/ppdd0 ; ppddsetup -d /dev/ppdd0

●Positive:
➢ Ease of use.

➢ Possibility to use without kernel modifications.

➢ Secure backups

➢ Support for read-only media

➢ PGP support

➢ Support for data integrity using MD5 hashes

➢ Possibility for encryption of the root partition

●Negative:
➢ Not so strong algorithm

➢ Block size of the filesystem is locked to 1024

CryptFS
●CryptFS operates by “encapsulating” a client file
system with a layer of encryption transparent to the
user.
●Cipher: Blowfish
●2 working modes (UID – UID+PID checking)
●Performance
●Longer Passphrases
●Encrypted filenames
●Secured even from root user.

TCFS
● Usable Ciphers: 3DES,RC5, Blowfish.

● Procedure of Installation:
– Kernel and sources recompilation

option TCFS
– Directory Creation

mkdir /crypto; mkdir /mnt/tcfs ; mkdir /crypto/kargig

chown kargig:wheel /crypto/kargig ; chmod 700 /crypto/kargig

– /etc/fstab modification
/crypto /mnt/tcfs tcfs rw,label=crypto, cipher=2

0=3DES 1=RC5 2=Blowfish

– Mount the device
mount /crypto

TCFS
●Creation of user and keys:

tcfsmgr adduser

tcfsuse genkey

●Using the Filesystem:

tcfsuse putkey -f crypto

●Setting the X flag to a dir and testing the filesystem:

 tcfsuse flags +x /mnt/tcfs/kargig

 cp ./foo.txt /mnt/tcfs/kargig

 cat /mnt/tcfs/kargig/foo.txt (we see clear output)

 umount /crypto

 cat /crypto/kargig/foo.txt (we se garbage)

OpenBSD Encrypted Virtual
Filesystem

● Usable Ciphers: Blowfish.

● Procedure of Installation:
– Creation of a file

dd if=/dev/urandom of=/home/kargig/cryptfile bs=1024 count=100000
– Association of cryptfile with a svnd device

vnconfig -ck -v /dev/svnd0c /home/kargig/cryptfile

– Creation of new filesystem
newfs /dev/svnd0c

– Mount the new filesystem
mount /dev/svnd0c /home/kargig/secrets

OpenBSD Encrypted Virtual
Filesystem

●Unmounting and securing the filesystem:

umount /dev/svnd0c

/usr/sbin/vnconfig -u -v /dev/svnd0c

●Positive:
➢Ease of use.

➢Performance.

●Negative:
➢Size Limit.

Conclusion
● In most encrypted filesystems a major problem appears

with multi-user environments.
● Security of a system is as strong as it's weekest link.
● Choose an encryption scheme according to the current

needs.
● Other Problems incude:

– Filesystem damage
– Data integrity checking
– Low Performance

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

